Focusing light into deep subwavelength using metamaterial immersion lenses.
نویسندگان
چکیده
We propose and demonstrate metamaterial immersion lenses by shaping plasmonic metamaterials. The convex and concave shapes for the elliptically and hyperbolically dispersive metamaterials are designed using phase compensation method. Numerical simulations verify that the metamaterial immersion lenses possess exceptionally large effective numerical apertures thus can achieve deep subwavelength resolution focusing. We also discuss the importance of the losses in modulating the optical transfer function and thus in enhancing the performance of the metamaterial immersion lenses.
منابع مشابه
Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies
Although all-dielectric metamaterials offer a low-loss alternative to current metal-based metamaterials to manipulate light at the nanoscale and may have important applications, very few have been reported to date owing to the current nanofabrication technologies. We develop a new "nano-solid-fluid assembly" method using 15-nm TiO2 nanoparticles as building blocks to fabricate the first three-d...
متن کاملOptical characterization of subwavelength-scale solid immersion lenses
We present the fabrication and optical characterization of nano-scale solid immersion lenses (nano-SILs) with sizes down to a subwavelength range. Submicron-scale cylinders fabricated by electron-beam lithography (EBL) are thermally reflowed to form a spherical shape. Subsequent soft lithography leads to nano-SILs on transparent substrates, i.e. glass, for optical characterization with visible ...
متن کاملSubwavelength focusing of light in the planar anisotropic metamaterials with zone plates.
We present here a structure with just a single slit covering the planar anisotropic metamaterial. The metamaterial has hyperbolic dispersion and can be realized using metal-dielectric multilayers. The structure combines the focusing performance of the zone plates and subwavelength resolution of the anisotropic metamaterials so that subwavelength focal spots can be obtained at the focal plane. T...
متن کاملHigh-Directivity Emissions with Flexible Beam Numbers and Beam Directions Using Gradient-Refractive-Index Fractal Metamaterial
A three-dimensional (3D) highly-directive emission system is proposed to enable beam shaping and beam steering capabilities in wideband frequencies. It is composed of an omnidirectional source antenna and several 3D gradient-refractive-index (GRIN) lenses. To engineer a broadband impedance match, the design method for these 3D lenses is established under the scenario of free-space excitation by...
متن کامل"Digitally" addressable focusing of light into a subwavelength hot spot.
We show that a plasmonic metamaterial can act as a far-field to near-field transformer that focuses a free-space beam of light into a subwavelength energy hot spot at a prescribed location with a spot size only a small fraction of the wavelength. The hot spot position on the metamaterial can be prescribed and moved at will from one metamolecule of the array to another in a "digital" fashion sim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 18 5 شماره
صفحات -
تاریخ انتشار 2010